“A Principal-Agent Building Block for the Study of Decentralization and Integration”

Mariano Tommasi y Federico Weinschelbaum

D.T.: N° 20
Noviembre 1999
A Principal-Agent Building Block for the Study of Decentralization and Integration

Mariano Tommasi
CEDI (Fundación Gobierno & Sociedad)
Universidad de San Andrés
tommasi@udesa.edu.ar

Federico Weinschelbaum
Universidad de San Andrés
fweinsch@udesa.edu.ar

Abstract

The architecture of public decision making in the world is being changed through processes of “economic integration” and of “decentralization”. Some policy decisions are now taken at a higher level (i.e., monetary policy in Europe, trade policy in part of South America), while others are taken by smaller political units “closer to the people” (i.e., health and education policies in many Latin American countries). We provide a building block for the study of such processes, emphasizing the trade-off between the advantages of centralized decision making (internalization of externalities) and those of decentralized decision making (increased principal-agent control by the citizens). We do so within the context of a class of principal-agent models known as common agency.

JEL CLASSIFICATION NUMBERS: D62, D71, H49, H79.

1We thank the research assistance of Gabriel Basaluzzo, and the valuable comments of Ernesto DalBo, Dhammika Dharmapala, Avinash Dixit, Jeff Frieden, Alex Galéovic, Matías Iaryczower, Inés Macho-Stadler, Pablo Spiller, Ernesto Stein, Marcelo Veracierto and seminar participants at Universidad de San Andrés, UTDT, CEMA, NYU, at the Center of Studies for Basic Research in the Social Sciences (Harvard University), at the Meeting of the Latin America and the Caribbean Economic Association in Santiago de Chile, at the Annual Conference of the Central Bank of Uruguay, and at the Political Economy Group of LACEA meeting in Cartagena.
KEYWORDS: centralization, integration, agency, externalities.

1 Introduction

The architecture of public decision making in the world is being dramatically altered through processes of “integration” and of “decentralization.” Some policy decisions are now taken at a higher level (i.e., monetary policy in Europe, trade policy in part of South America), while others are taken by smaller political units “closer to the people” (i.e., health and education policies in many Latin American countries). Both processes are the two faces of the same coin: the search for appropriate governance structures for public decision making.

The rhetoric of current decentralization efforts (see, for instance, World Bank 1999) emphasizes notions such as accountability, proximity, yardstick competition, all of which should, in our view, be cast in formal agency set-ups. It might be the case that, with larger and more dispersed populations, it is harder to solve the free-rider and coordination problems that arise in controlling “the agent” we call the government. In that sense, decentralization (bringing government closer to the people) might be a way of alleviating political control problems.

We formalize the trade-off between one of the main advantages of centralized decision making - namely, the internalization of externalities and economies of scale - and one of its main disadvantages - namely the “democratic deficit” of having decision making further removed from the citizenry. In particular, we cast the latter dimension in a principal-agent framework.2

We analyze a case in which the principal is not a single individual but a group, a population. There are, in principle, several stages of an agency problem where one can introduce a collective control problem: the contract stage, the monitoring stage, the enforcement stage.

2In a sense, we consider an exercise in “optimal constitutional choice” between centralization and decentralization, recognizing (in a stylized manner) some political economy issues within each regime. In the concluding section we briefly reflect on the politics of such “constitutional” choice.
As a rst step in this agenda, for the sake of generality and comparability with other areas of application, we cast our analysis in a class of models that has become the workhorse multi principal-agent framework: the “common agency” model (Bernheim and Whinston 1986, Grossman and Helpman 1994, Dixit, 1996). One variant of the common agency model, known as intrinsic common agency is a good rst approximation to the problem of control of policymakers by citizens. We discuss the general class of multiprincipal-agent models and its applicability to our problem in later sections.3

Our model has two essential ingredients: an externality problem in the provision of (“local”) public goods (favoring centralization as the desired institutional arrangement), and a collective action problem among (citizens) principals in controlling political agents (favoring, under some conditions, decentralization). The rst component has been a standard feature in the discussion of the trade-offs between centralized and decentralized provision of public goods since, at least, the seminal work of Oates (1972). In that paper, the externality/spillover effect was traded-off against the cost of centralized provision in terms of a “one size fits all” policy of uniform public good provision, independently of local needs and tastes. Oates’ Decentralization Theorem states that in the absence of spillovers (and of cost-savings from centralized provision), decentralization is preferable. This has to be read as “preferable to uniform provision.” But, in a setting of perfect information, nothing will prevent a benevolent central planner to prescribe the right amounts for each jurisdiction. (Oates, 1999).

Later work has emphasized, hence, that the case for decentralization has to be driven by political economy considerations. Besley and Coate (1998), Lockwood (1998) and Seabright

3Ours is a model of representative (not direct) democracy. We assign the policymaker/s the right to choose policy, and we give the citizens a “vainilla” principal-agent control mechanism. There are some interesting papers by Persson and Tabellini (1996 and 1996b), Cremer and Palfrey (1999), and others looking at direct-democracy political aggregation technologies. Those models derive rich implications, but by construction ignore issues of political agency.
(1996) present models in which potential benefits of decentralization are derived through endogenous choices under alternative political aggregation mechanisms. Bardhan and Mookherjee (1998) analyze alternative methods of delegating authority; in their model a central government has limited ability to monitor the performance of the bureaucrats while in a decentralized system the local governments may be subject to capture by local elites.

Many of those papers do require interjurisdictional heterogeneity \textit{a la Oates} in order to derive benefits of decentralization. One of the features of our formalization is that it does not require heterogeneity. In the simplest formulation of the heterogeneity issue, decentralization can improve the efficiency of governments because local officials have better information to match the mix of services produced by the public sector and the preferences of the local population (i.e., they have the means to be responsive). The principal-agent avenue that we pursue emphasizes the incentives of politicians to better serve their people. We believe that our model provides a useful step in the process of formalizing some of the key concepts being discussed in the decentralization debate around the globe.

Section 2 presents the model and the analysis. In Section 3 we cast the recent \textit{“decentralization”} discussion in more theoretical terms; and we assess how far does the \textit{“standard”} multiprincipal agent model travel in addressing some of those applied concerns. Section 4 concludes.

2 The model4

There are M towns. A local public good has to be provided for each town. Hence, we have an M goods economy $x = (x_1; x_2; \ldots; x_M)$: There are $N = n_1 + n_2 + \cdots + n_M$ citizens (principals) of type 1; 2; \cdots; M respectively.

We assume that each principal has linear preferences according to his type,

$$b_1 \phi x_1 + b_2 \phi x_2 + \cdots + b_M \phi x_M = b_0 \phi x$$

4We follow the formulation of the common agency model of Dixit (1996).
bi \leq 0 is the utility that each principal of type i gets for a unit of his own local public good and b_{ij} \leq 0 (i \neq j) is the externality that he gets for a unit of local public good in town j.

We will consider two alternative “federal” organizations; one in which there is one agent serving the whole population, and another in which there is one agent per locality. In the second case, “decentralization,” we do not allow contracting between citizens in one locality and policymakers in another.

The production technology in each locality is given by a level of “effort” (ti) chosen by the agent responsible to provide the local public good in that town plus an error term (“i). The error terms are independently and normally distributed with mean 0 and variance \frac{\sigma^2}{2}. (In the more general case there will be a variance matrix \Sigma which might include non-zero off-diagonal elements.) The output vector is

\[x = t + \epsilon; \]

where t is the vector of the agent(s)’ efforts, \(t = (t_1; t_2; \ldots; t_n) \), and \(\epsilon \in \mathbb{R}^M \) is the vector of error terms.

As common in the principal-agent literature, agents are risk averse. We assume that they have constant absolute risk aversion, with utility function

\[u_a(w) = -e^{\frac{1}{2}t^\top \Sigma t}; \]

where w is the monetary measure of the utility and is composed by the payment z that they receive from the principals minus a quadratic cost of effort \(\frac{1}{2}t^\top C t \) where

\[
C = \begin{bmatrix}
2 \\
0 & c_1 & 0 & \cdots & 0 \\
0 & 0 & c_2 & \cdots & 0 \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \cdots & c_M \\
\end{bmatrix}
\]

\(^5\)The assumption of C being a diagonal matrix rules out the possibility of having externalities in the production side.
Hence when there is only one agent, his “monetary” payoffs are
\[w = z \cdot t^0 c_t = z \cdot \frac{1}{2} \sum_{j=1}^{M} c_j t_j^2; \]
and when there are \(M \) agents, their payoffs are
\[w_j = z_j \cdot \frac{1}{2} t_j^2 c_j; \]

The expected utility of principal \(i \) is \(\prod_{j=1}^{M} b_j t_j z_i \). The expected utility of the “aggregate” principal is
\[\prod_{j=1}^{M} \sum_{i=1}^{n_i} b_j t_j z; \]
where \(z = \prod_{i=1}^{n_i} z_i; \)

In the remainder of this section, we evaluate the welfare that is attained under two alternative institutional arrangements: centralization, when the whole population hires one agent to provide the whole vector of goods, and decentralization, when each town hires its own agent to provide the local public good. We do so under three different contexts in terms of observability of the agents’ effort and in terms of the nature of interactions among principals. This leads us to consider 6 cases. The first one is just the rst-best benchmark, and each of the others builds additional deviations from rst best, preparing us for the nal comparison of centralization versus decentralization in the most realistic scenario in terms of information and collective action capabilities of the citizens.

In subsection 2.1. effort is observable and verifiable (hence contractable) and the principals act as united actors – there is no problem of cooperation among principals in contracting with the agent. In subsection 2.2. we maintain the assumption of united principals, but

We use the notation \(j \) to refer to goods, and \(i \) to refer to principals’ type, although in the solutions we will use them interchangeably, since sometimes (centralized case) we will emphasize the agent’s choice of effort in dimension \(j \), and other times (decentralized case) we will focus on the incentive scheme provided by principals of type \(i \).
effort is not observable. Finally, in subsection 2.3, effort is not observable and principals act in a non-cooperative manner. The first two cases serve as benchmark for the third one, the one we focus on. We will use the notation t_{ij}^{1c} to denote the level of effort in producing j under a centralized political structure in case 1 (contractable effort and united principals), t_{ij}^{3d} to denote the level of effort in producing j under a decentralized political structure in case 3 (non-contractable effort and separate principals), and so forth.

As it is a standard practice in these models, we assume that the principal offers a contract and the agent can accept or reject it, implicitly giving all the bargaining power to principals. (There are some subtleties in applying this logic to common agency cases. We refer to that in 2.3.) The timing is the standard one: the contract/s is/are offered by the principals, the agent/s accept or reject (leading to the participation constraint), agent supplies effort (leading to the incentive compatibility constraint), shocks are realized, and then outcomes and payoffs obtain.

2.1 Contractable effort, united principals

In this case principals and agents can write contracts contingent on the agents providing a stipulated level of effort.

7We follow Dixit (1996) and call these cases united and separate principals, respectively. In sections 2.1 and 2.2, principals (within a political jurisdiction) cooperate fully. In section 2.3, they do not cooperate at all. (In each case, we compare a unique national political jurisdiction, to multiple local jurisdictions). In the concluding section we speculate about intermediate degrees of cooperation, possible institutional arrangements for that, and how that might be affected by multi-layered political jurisdictions.

8We do not analyze explicitly a fourth possible context with contractable effort and separate principals. Results analogous to the case of contractable effort and united principals can be obtained in that case (see Bernheim and Whinston, 1986).
2.1.1 Centralized case (.rst-best)

The payment is only a transfer and it will be set at the level that gives to the agent his reservation utility. The principal(s) will choose the level of effort that maximizes aggregate surplus,

$$\forall i \forall j \ n_i b_j t_j \ i \frac{1}{2} c_j t_j^2$$

The rst order condition with respect to t_j, leads to

$$\forall i \ n_i b_j = c_j t_j$$

Marginal social benefit is equated to marginal social cost. For this centralized case, as standard in principal-agent models, rst-best is achieved when effort is contractable. The level of effort is

$$t^{1c} = \frac{P M \sum_{i=1}^{n_i b_j}}{c_j} = t^*$$

for all j, which corresponds to the rst best level t^*.

We will use this case as a benchmark to compare with other environments. Since the aggregate surplus is a quadratic function on t_j that achieves a maximum when $t_j = \frac{P M \sum_{i=1}^{n_i b_j}}{c_j}$, we know that if $t_j < \frac{P M \sum_{i=1}^{n_i b_j}}{c_j}$; t_j is a measure of welfare.

2.1.2 Decentralized case

Now we have separate agents. Their respective costs are $\frac{1}{2} c_j t_j^2$.

As before, the payment from principal to agent (now, in each locality) is just a transfer that leaves each agent in its reservation utility level. The aggregate principal of each locality will, thus, choose the level of effort that maximizes the aggregate surplus in the locality.

This is clearly valid when the agents' payment is riskless, as in this case. When effort is not observable, contracts will be such that agents' will bear some risk, and social surplus will have a term in addition to those in equation (1) to capture that loss. We show later that t is also a sufficient statistic for welfare in that case.
Type i principals maximize \(\max_{i} \prod_{j=1}^{M} n_i b_{ij} t_j \) with respect to \(t_i \); taking \(t_k (k \neq i) \) as given, leading to \(n_i b_{ii} = c_i t_i \). They equate marginal social cost to marginal social benefit of the locality. Although effort is contractable the result is not optimal since each principal does not take into account the externalities that its good provides to the other regions. The level of effort in this decentralized world is

\[
t_{i}^{1d} = \frac{n_i b_{ii}}{c_i} = \frac{P_{i=1}^{M} n_i b_{ij}}{c_i} = \frac{n_i b_{ii}}{P_{i=1}^{M} n_i b_{ij}}
\]

There is under-provision of effort, which comes from a standard Nash externality across localities.

Therefore, with contractable effort, centralization is the preferable institutional arrangement.

2.2 Non contractable effort, united principals

2.2.1 Centralized case (the standard “second-best” principal-agent case)

Now principals can monitor the effort \(t \) but only imperfectly, i.e., they observe \(x \) but not \(t \). The agent is offered the contract

\[
z = \circ \circ \circ x + ^{−}
\]

We follow Dixit (1996) in restricting attention to linear reward schemes, since they go naturally with quadratic payoffs (see also Holmstrom and Milgrom 1987 and 1991). \(\circ \circ \circ \) is the vector of incentive payments for each activity, while \(^{−} \) is used to fulfill the agent’s participation constraint.

The agent’s certainty equivalent (CE) is \(\circ \circ \circ t + ^{−} \sum_{i} \frac{1}{2} \circ \circ \circ \circ \circ \circ t \circ \circ \circ \circ \circ t \circ \circ \circ \circ \circ C t \); and the principals’ benefit is

\[
\prod_{i}^{M} \prod_{j=1}^{P} n_i b_{ij} \circ \circ \circ x_{ij} \circ \circ \circ^{−}
\]
The natural equilibrium concept is Perfect Bayesian Equilibrium. We start by solving for the effort choices of the agent, which will lead to his incentive compatibility constraint.

The agent’s problem is

\[
\max_{\text{\textstyle \sum_{j=1}^{M} t_j}} \sum_{j=1}^{M} \frac{\beta}{c_j} t_j - \frac{r}{2} \sum_{j=1}^{M} \frac{\beta^{3/2}}{c_j} t_j^2 - \frac{1}{2} \sum_{j=1}^{M} \frac{\beta c_j}{c_j} t_j^2 + \frac{1}{2} \sum_{j=1}^{M} \frac{\beta c_j}{c_j} t_j^2
\]

which leads to

\[
t_j = \frac{\beta}{c_j}
\]

for all \(j \).

The expected social surplus is then

\[
\sum_{j=1}^{M} 2^4 \sum_{i=1}^{N} n_i b_i \frac{\beta}{c_j} \sum_{j=1}^{M} \frac{\beta^{3/2}}{c_j} t_j^2 - \frac{1}{2} \sum_{j=1}^{M} \frac{\beta c_j}{c_j} t_j^2 + \frac{1}{2} \sum_{j=1}^{M} \frac{\beta c_j}{c_j} t_j^2
\]

(2)

The principal maximizes (2) with respect to \(\beta \) leading to \(\beta^{2c} = \frac{\prod_{i=1}^{N} n_i b_i}{(1 + r c_j c_j)} \), which implies

\[
t_j^{2c} = \frac{\prod_{i=1}^{N} n_i b_i}{c_j} \frac{1}{1 + r c_j c_j} = \frac{\prod_{i=1}^{N} n_i b_i}{c_j} \frac{1}{1 + r c_j c_j}
\]

The level of effort is lower than the optimal whenever the coefficient of absolute risk aversion (\(r \)) is positive. This is the “traditional” principal agent problem, with its associated trade off between incentives and risk sharing.

Note that the expected social surplus is quadratic in \(\beta \); then \(\beta \) is a measure of welfare when \(\beta < \beta^{2c} \), and so is \(t_j \) since it is increasing in \(\beta \) when \(t_j < t_j^{2c} \). Hence, as in the case when effort was contractable, \(t \) is a measure of welfare.

2.2.2 Decentralized case

The problem of the agents, and its solution, is the same as the one of the centralized case.

Principals of type \(i \) maximize

\[
\sum_{j=1}^{M} n_i b_j \frac{\beta}{c_j} \sum_{j=1}^{M} \frac{\beta^{3/2}}{c_j} t_j^2 - \frac{1}{2} \sum_{j=1}^{M} \frac{\beta c_j}{c_j} t_j^2 + \frac{1}{2} \sum_{j=1}^{M} \frac{\beta c_j}{c_j} t_j^2
\]
with respect to $@_k$ ($k \neq i$) as given, obtaining $t_i^{2d} = \frac{n_i b_i}{(1 + c_i r^{2r})}$, which implies

$$t_i^{2d} = \frac{\sum_{j=1}^{M} n_i b_{ij}}{c_i} \frac{1}{\sum_{j=1}^{M} n_i b_{ij}} = t_i^{2d} = \frac{\sum_{j=1}^{M} n_i b_{ij}}{c_i} \frac{1}{\sum_{j=1}^{M} n_i b_{ij}} (1 + c_i r^{2r})$$ (3)

The effort exerted by the agent is, again, lower for this case than for the centralized economy, except when consumption externalities are zero. As it can be seen in equation (3), in this case there are two sources of the under provision of effort, the externalities ($n_i b_{ij} < \sum_{j=1}^{M} n_i b_{ij}$) that the principals do not take into account, and the low power incentive scheme that is given to the agents in order to minimize their exposure to risk.

Note that in the two cases considered so far, centralization is preferable. That is because we haven’t brought into play yet the potential disadvantage of centralization, a harder agency problem due to the larger number of principals. To that we turn now.

2.3 Non contractable effort, separate principals

This is a good point to pause and to pinpoint which is the exact exercise to be performed, its antecedents in the theoretical literature, and its relevance for the applied problem at hand. We are studying situations in which there are multiple principals (citizens, in the specific application). The interactions among principals in their relation to the agent/s might operate at different stages of a full blown principal-agent interaction. In this paper, we follow the precedent of Bernheim and Whinston (1986), Grossman and Helpman (1994), Dixit (1996), Dixit, Grossman and Helpman (1997) and Stole (1997) in their focus on the contracting stage of the control problem. (Other stages of control, such as monitoring or, perhaps, enforcement can be also subject to the type of collective action problems in control which seem to underlie the conventional wisdom of “small is beautiful” in the applied decentralization literature.)

Our model is closer to the first three (it is literally an extension of Dixit 1996) in focusing on the moral hazard case with noncontractable effort. Dixit et al (1997) treat the case in which effort is contractable (with general, as opposed to quasi-linear, preferences). Stole (1997) focuses on an adverse selection case.
These papers have christened the problem they analyze as the “common agency” framework. In a nutshell, the games being analyzed consist of:

1) A first stage, in which each principal offers a payment scheme (a contract) to the agent
2) A second stage in which the agent decides whether to accept the contract/s
3) A final stage in which the agent (if, in stage 2, he decided to participate) decides upon his level/s of effort.

All of the papers maintain the assumption that the principal/s make take-it-or-leave-it offers to the agent. Interestingly, in this multiprincipal set up it is not so obvious that this implies that all the surplus of the relationships goes to the principal/s.\(^{11}\) It turns out that the second stage, not always made explicit in the previous papers, might also impinge upon the “bargaining” outcome.

We can imagine two modelling choices at that point: either the agent is forced to choose between accepting or rejecting the full set of contracts offered, or he can choose whether to accept or reject each particular contract (which is equivalent to selecting any subset of contracts). Stole (1997) refers to the first case as intrinsic common agency and to the second as delegated common agency.\(^{12}\) An example of intrinsic common agency would be regulation by multiple authorities: the regulated firm can choose between abiding to all of those payment functions or exiting the market altogether. An example of “delegated”

\(^{11}\)As a matter of fact, Dixit et al (1997) show, for a particular case, that all the surplus will go to the agent as long as there is more than one principal.

\(^{12}\)We will follow his definition since it is clear and it is exhaustive, even though we think it is not a completely satisfying terminology. Stole (1997) claims to be following the terminology of Bernheim and Whinston (1986), but we don’t think that is correct. In defining these two categories BW refer to whether the principal/s choose(s) to delegate some decisions to an agent, delegated agency, versus cases in which the agent is naturally endowed with the right to make some decisions which affect the welfare of the principal/s, intrinsic agency. Notice that, unlike Stole’s their definition applies even to bilateral agency situations. Stole calls intrinsic common agency (a good name) cases in which the agent does not have the option to select a subset of principals and delegated common agency (a bad name) cases in which the agent can select principals.
common agency would be a salesman, distributor or retailer who decides whose products to carry. Most of the mentioned papers have modelled the intrinsic common agency case, and so do we because we believe it is the one that comes closer to capturing the problem of political control we want to study.\footnote{For useful steps at modelling delegated common agency, see Bernheim and Whinston (1985), Bisin and Guaitoli (1999) and Kahn and Mookherjee (1998).}

We consider below our two standard institutional comparisons. In the centralized case, each of the N total principals will offer a contract to the only agent. Each contract might include the realized level of output in all the activities. In a Nash equilibrium, each principal offers his contract, taking all the other principal’s contracts as given.

In the decentralized case each principal in town i is allowed to offer a contract to the agent of that town but not to agents from other towns. Within each town, each principal offers his contract, taking all the other principal’s contracts as given. One way of thinking about our exercise would be to imagine that in the centralized case there are still M agents, but that “cross-contracts” are allowed and that those M agents are united.

2.3.1 Centralized case

In this case each of the $N = \prod_{i=1}^{M} n_i$ principals can contract with the one agent. Principals can monitor efforts only imperfectly. The agent is hired through individual contracts with each principal l and payment $z^l = @^l x + \bar{r}^l$; where $@^l = (\beta_1^l; \beta_2^l; \ldots; \beta_M^l)$: Each principal will offer a contract, taking as given the contracts offered by the other principals. Let $@^l = \prod_{j=1}^{M} \beta_j^l$ and $\bar{r}^l = \prod_{j=1}^{M} \bar{r}_j^l$. The agent’s CE is $@^l t + \bar{r}^l \sum_{j=1}^{M} \beta_j^l t_j^l + \bar{r}^l$.

At the stage of choosing effort, the agent maximizes

$$\max_t \sum_{j=1}^{M} \beta_j^l t_j^l + \bar{r}^l \sum_{j=1}^{M} \beta_j^l t_j^l + \bar{r}^l$$
which leads to $t_j = \frac{\bar{c}_j}{c_j}$:

Let $A_{ij} = \sum_{k \in I} P_{ij} \frac{a_k}{\bar{c}_j} \cdot \bar{c}_{ik} \cdot \bar{c}_j$; and $B_{ij} = \sum_{k \in I} P_{ij} \bar{c}_{ik} \cdot \bar{c}_j$. If only principal l does not sign a contract with the agent regarding activity j, the latter best strategy over j will be $t_j = \frac{A_{ij} - \bar{c}_j}{\bar{c}_j}$, and his certainty equivalent (CE) will be

$$M_{X_{ij}} = \sum_{j=1}^{n} \left\{ \frac{b_{ij}}{\bar{c}_j} \right\} \left(\frac{A_{ij} - \bar{c}_j}{\bar{c}_j} \right)^2 + \sum_{j=1}^{n} \left(\frac{1}{2\bar{c}_j} \right) \left(\frac{r^{3/2} \bar{c}_j}{Z^{3/2}} + B_{ij} \right)$$

whereas if this additional contract is signed, effort will be $t_j = \frac{\bar{c}_j}{c_j} \cdot \bar{c}_j$, and the agent's CE will be

$$M_{X_{ij}} = \sum_{j=1}^{n} \left\{ \frac{b_{ij}}{\bar{c}_j} \right\} \left(\frac{\bar{c}_j}{c_j} \cdot \bar{c}_j \right)^2 \left(\frac{1}{2\bar{c}_j} \right) \left(\frac{r^{3/2} \bar{c}_j}{Z^{3/2}} + B_{ij} \right)$$

The marginal gains in signing the contract are

$$M_{X_{ij}} = \sum_{j=1}^{n} \left\{ \frac{b_{ij}}{\bar{c}_j} \right\} \left(\frac{\bar{c}_j}{c_j} \cdot \bar{c}_j \right)^2 \left(\frac{1}{2\bar{c}_j} \right) \left(\frac{r^{3/2} \bar{c}_j}{Z^{3/2}} + B_{ij} \right)$$

Principal l's expected utility if his contract is not signed, is $\sum_{j=1}^{n} b_{ij} \frac{A_{ij} - \bar{c}_j}{\bar{c}_j}$ (where i is the town where citizen l lives), whereas if he signs the contract it will be $\sum_{j=1}^{n} b_{ij} \left(\frac{\bar{c}_j}{c_j} \cdot \bar{c}_j \right)^2 \left(\frac{1}{2\bar{c}_j} \right) \left(\frac{r^{3/2} \bar{c}_j}{Z^{3/2}} + B_{ij} \right)$, and the marginal gains are

$$M_{X_{ij}} = \sum_{j=1}^{n} \left\{ \frac{b_{ij}}{\bar{c}_j} \right\} \left(\frac{\bar{c}_j}{c_j} \cdot \bar{c}_j \right)^2 \left(\frac{1}{2\bar{c}_j} \right) \left(\frac{r^{3/2} \bar{c}_j}{Z^{3/2}} + B_{ij} \right)$$

From (4) and (5), the total bilateral surplus is then

$$M_{X_{ij}} = \sum_{j=1}^{n} \left\{ \frac{b_{ij}}{\bar{c}_j} \right\} \left(\frac{\bar{c}_j}{c_j} \cdot \bar{c}_j \right)^2 \left(\frac{1}{2\bar{c}_j} \right) \left(\frac{r^{3/2} \bar{c}_j}{Z^{3/2}} + B_{ij} \right)$$

Maximizing (6) with respect to \bar{c}_j leads to

$$0 = \frac{b_{ij}}{\bar{c}_j} \left(\frac{A_{ij} + 2\bar{c}_j}{\bar{c}_j} \right)^3 + \frac{1}{\bar{c}_j} \cdot \bar{c}_j \cdot \frac{r^{3/2}}{Z^{3/2}}$$

$$= b_{ij} \cdot \bar{c}_j \cdot \bar{c}_j + A_{ij} \cdot \frac{\bar{c}_j}{c_j} \cdot \frac{r^{3/2}}{Z^{3/2}}$$
After solving for \(\Phi_l \) we get \(1 + r_c \frac{3}{q} = b_{ij} A_l^{1} r_c \frac{3}{q} \). Recalling that \(A_l^{1} = \Phi_l i \) we obtain \(\Phi_l = b_{ij} i \Phi_l r_c \frac{3}{q} \). Adding over all the principals we obtain

\[
\Phi = \sum_{i=1}^{N} \frac{n_i b_{ij}}{1 + N r_c r_c \frac{3}{q}}.;
\]

Therefore, for this case we have

\[
\Phi^c_l = \frac{\sum_{i=1}^{N} n_i b_{ij}}{1 + N r_c \frac{3}{q}}.
\]

This gives a level of effort

\[
t^c_l = \frac{\sum_{i=1}^{N} n_i b_{ij} \frac{1 + r_c \frac{3}{q}}{1 + N r_c \frac{3}{q}}}{1 + r_c \frac{3}{q} 1 + N r_c \frac{3}{q}} = \frac{\sum_{i=1}^{N} n_i b_{ij} \frac{1 + r_c \frac{3}{q}}{1 + N r_c \frac{3}{q}}}{1 + r_c \frac{3}{q} 1 + N r_c \frac{3}{q}}; \tag{7}
\]

which is smaller than in the case of united principals. The first term in the right hand side of (7) is the optimal value of \(t^c_l \) but this is multiplied by the risk-sharing effect \(\frac{1}{1 + r_c \frac{3}{q}} \), and by the “too many principals” effect \(\frac{1 + N r_c \frac{3}{q}}{1 + N r_c \frac{3}{q}} \).

2.3.2 Decentralized case

In this case we have that in each town \(i \), the \(n_i \) principals will be offering contracts to the local agent, but not to agents in other localities. The marginal gain for agent \(i \) in signing a contract with principal \(l \) of his town is \(\mu^3_k \Phi_l \frac{3}{q} + 2 A_l^{1} \Phi_l \frac{1}{2c_i} i \frac{r_c \frac{3}{q}}{2} + 1 \).

Principal \(l \)'s expected utility in the absence of this relationship is \(\sum_{j=1}^{N} b_{ij} A_l^{1} \frac{1}{c_i} \), whereas if he signs the contract it will be \(\sum_{j=1}^{N} b_{ij} A_l^{1} \frac{1}{c_i} i + \sum_{j=1}^{N} b_{ij} A_l^{1} \frac{1}{c_i} i - 1 \). The total bilateral surplus is then

\[
\sum_{j=1}^{N} b_{ij} A_l^{1} \frac{1}{c_i} i - \sum_{j=1}^{N} b_{ij} A_l^{1} \frac{1}{c_i} i + \mu^3_k \Phi_l \frac{1}{2c_i} i \frac{r_c \frac{3}{q}}{2} + 1 \tag{8}
\]

Maximizing (8) with respect to \(\Phi_l \) leads to

\[
0 = b_{ij} i \Phi_l \frac{3}{q} + A_l^{1} r_c \frac{3}{q};
\]
After solving for \(\theta \) we obtain \(\theta (1 + rc_i \frac{3}{2}) = b_i \frac{\theta_i}{\theta} A_i r c_i \frac{3}{2} \). Recalling that \(A_i = \theta_i \theta \) this leads to \(\theta = b_i \frac{\theta_i}{\theta} r c_i \frac{3}{2} \). Adding over all the principals that can contract agent \(i \), i.e., over citizens of town \(i \), we obtain \(\theta = n_i b_i \frac{\theta_i}{\theta} n_i r c_i \frac{3}{2} \). Therefore, for this case we have

\[
\theta^{3d} = \frac{n_i b_i}{1 + n_i r c_i \frac{3}{2}}
\]

This gives a level of effort

\[
t^{3d} = \frac{\prod_{i=1}^{\mathcal{P}} n_i b_i}{\mathcal{C}_i} \frac{1}{n_i b_i} \frac{1 + r c_i \frac{3}{2}}{1 + r c_i \frac{3}{2} + n_i r c_i \frac{3}{2}} = \frac{\prod_{i=1}^{\mathcal{P}} n_i b_i}{n_i b_i} \frac{1}{n_i b_i} \frac{1 + r c_i \frac{3}{2}}{1 + r c_i \frac{3}{2} + n_i r c_i \frac{3}{2}}
\]

In this case we have three effects that reduce the level of effort, 1) the externalities, 2) the risk sharing effect and 3) the “many principals” problem.

2.3.3 Comparing centralization and decentralization

Comparing (9) with (7) we see that although with centralization there is no problem of externalities, this time it is not clear when the level of effort (and hence welfare) is higher. This is because the agency problem is stronger in the centralized case. The larger the population of principals, the deeper the problem of lack of coordination in contracting with agents. Decentralization will be preferable to centralization whenever the externality effect is less important than the differences of the coordination effect, or

\[
\frac{n_j b_j}{\mathcal{P}} \frac{1 + r c_i \frac{3}{2}}{1 + n_j r c_i \frac{3}{2}} > \frac{1 + r c_i \frac{3}{2}}{1 + N r c_i \frac{3}{2}} \quad \text{and} \quad \frac{n_j b_j}{\mathcal{P}} \frac{1 + n_j r c_i \frac{3}{2}}{1 + N r c_i \frac{3}{2}} > \frac{1 + n_j r c_i \frac{3}{2}}{1 + N r c_i \frac{3}{2}}.
\]

To simplify the comparisons, we assume from now on a symmetric case in which \(b_j = b \) and \(b_i = \theta b \), with \(\theta \in [0;1] \). In this case (10) becomes

\[
\frac{n_j b}{n_j b + (N_i n_j) \theta b} = \frac{n_j}{n_j + (N_i n_j) \theta} > \frac{1 + n_j r c_i \frac{3}{2}}{1 + N r c_i \frac{3}{2}}.
\]

It is easy to see that:
When $\phi = 0$ (no externalities), decentralization is the preferred institutional arrangement; and when $\phi = 1$ (pure public goods), centralization is the preferred institutional arrangement.

More generally, since we know that $\frac{\partial^3 d}{\partial \phi^3} = 0$ and $\frac{\partial^3 c}{\partial \phi^3} = (N \cdot n_j) \left(\frac{b}{(1 + N c_j)^2} c_j \right) > 0$, there will be a cut-off point (ϕ_j) such that when $\phi > \phi_j$ centralization is preferable and when $\phi < \phi_j$, decentralization is preferable.

To find ϕ_j, we have to make $t_j^{3d} = t_j^{3c}$. This implies

$$\frac{n_j r c_j}{1 + n_j r c_j} = \phi_j$$

Letting

$$\pm = n_j r c_j$$

we have

$$\frac{\pm}{1 + \pm} = \phi_j$$

which implies that for each \pm there is a critical ϕ above which the centralized solution is better, as shown in Figure 1. \pm is a measure of the control problems, which are increasing in the variance of the wedge between effort and outcomes $\frac{3\phi}{2}$, in the conflict of interest between the principals and the agent (the cost c_j) and in the number of citizens/principals in the town.

Notice that our result, that there are cases in which decentralization is preferable, obtains even in the case in which there is homogeneity of preferences across towns. We do not require heterogeneity a la Oates to make a case for decentralization.\(^\text{14}\)

Since we are assuming that ϕ is independent of the region, but the \pm can differ, it could be the case that some goods are better provided by a centralized agent while others by a decentralized one.

\(^\text{14}\) A similar result is obtained by the other paper that emphasizes the accountability dimension of decentralization, Seabright (1993).
2.3.4 Alternative (intermediate) federal arrangements: Regions

As an illustration of possible applications of the model to study alternative institutional questions, we consider here intermediate federal arrangements. The model so far has compared two situations: one of complete centralization with one of complete decentralization; but perhaps the optimal institutional technology is an intermediate one, call it
regionalization
, grouping some but not all localities together. It turns out that the answer to that question depends heavily on the degree of heterogeneity and on the diversity of externalities across towns. We consider rst a fully (symmetric) world.

In a symmetric world \((n_i = n \forall i, b_{ij} = b \forall j; and b_i = b \forall i)\), with \(\delta \in [0; 1]\) we can compute the level of efort as a function of the quantity of towns \(2 [1; M]\) that belong to each region. \((h = 1)\) would stand for the case of complete decentralization and \(h = M\) for the case of complete centralization. From (7),

\[
t_j(h) = \frac{\sum_{i=1}^{n} nb_{ij}}{c_j(1 + nhrc_j)} = \frac{nb + n(h - 1)\delta b}{c_j(1 + nhrc_j)}.
\]

It is easy to verify that the sign of \(\frac{dt_j(h)}{dh}\) is independent of \(h\). Therefore, there is always a corner solution; when the derivative is positive, centralization \((h = K)\) is optimal, and when it is negative, decentralization \((h = 1)\) is optimal.\(^{15}\) (As we already know, the derivative will be positive if \(\frac{\delta}{1+\frac{\delta}{3}} < \delta_j\)\)

The result above depends crucially on the symmetry assumption. We provide now an example of an “asymmetric” country where the optimal institutional technology is neither complete centralization nor complete decentralization.

Imagine there are four towns \(i = 1; 2; 3; 4\), with externalities as follows. The commodity of towns 1 and 2 are enjoyed equally by the citizens of towns 1 and 2 \((b_{11} = b_{21}; b_{22} = b_{12})\) and the same happens with the commodities of towns 3 and 4 and its respective citizens

\(^{15}\)Of course \(h\) is a discrete variable, and hence the derivative is not de ned. But since when the sign of the “derivative” of \(t_j(h)\) is independent of the level of \(h\), so is the sign of the value of any discrete difference. This guarantees our result.
(b_{33} = b_{43}; b_{44} = b_{34}); while neither the commodities of towns 1 or 2 provide any externality to the citizens of towns 3 and 4 (b_{13} = b_{44} = b_{23} = b_{24} = 0), nor the commodities of towns 3 or 4 to the citizens of towns 1 and 2 (b_{31} = b_{41} = b_{32} = b_{42} = 0): Using the facts that when there are no externalities, decentralization is the preferred institutional arrangement; and when there is pure public goods, centralization is the preferred institutional arrangement, it is easy to see that the optimal institutional technology is having two regions f1; 2g and f3; 4g:

3 A recap: on modelling decentralization

We think that our model provides a useful step in the process of formalizing some of the key concepts being discussed in the decentralization debate around the globe. We provide below a listing of some of the usual claims being heard in favor of the decentralization of political power and public services (see, for instance World Bank, 1999), and try to interpret those claims in more formal language. The “catch-all” expression behind most of those claims is the notion of accountability.

The first channel through which smaller jurisdictions seem to improve political control is the standard Olsonian relationship between group size and free-riding in the voluntary provision of a public good. The benefits of one citizen controlling the government are not only diluted by the large number of people sharing the returns but also by the small probability of altering the final output. The application of that logic to the public good of political control is what, in a special way, we have modelled here. Later on we discuss the generality of this result.

The second oft-mentioned channel is what we might call “the proximity effect.” Namely, local officials can be held accountable because they are closer (Ostrom, Schroeder and Wynne, 1993). We interpret this effect as deriving from the fact that citizens and politicians in small

\[16\] Puttermann (1993 a,b) uses this logic to study the problem of public ownership.
communities do interact repeatedly in multiple settings, hence giving the principals (citizens) additional instruments to punish misbehavior in related games - for instance, socially ostracizing a bad governor. (We will argue later that this proximity might also empower local officials to abuse citizens). A reader suggested that the proximity-effect might relate to informational issues: i.e. it is easier to observe effort at the local level, which might be captured by \(\frac{1}{2} \) being smaller in local as opposed to national provision.\(^{17}\)

A third channel is that of yardstick competition. Given the standard assumption of unobservable effort, citizens have to infer the governor’s behavior from outcomes. If the shocks that create the wedge between effort and outcomes are correlated across jurisdictions, citizens might condition their payments also on outcomes in the other jurisdictions (as in Besley and Case 1995). We conjecture that such extension of our model might generate an increase in the desirability of decentralization.

Another channel might operate through the experimentation/learning possibilities of having multiple jurisdictions (localities as “laboratories of democracy.”) This argument is somewhat tied to some of the previous (or other political-economy) channels, since in principle a centralized government can also experiment over the territory. On policy experimentation under decentralization, see Strumpf (1999), who makes the perceptive point that since experimentation creates externalities, it might also be subject to Nash problems. If decentralization does indeed (as Strumpf ...nds) increase experimentation, it might be due to the increased incentives of local politicians through channels like the ones we emphasize in this paper.\(^{18}\)

\(^{17}\)Notice that this sort of proximity argument might also provide a microfoundation for the association of smaller numbers of people with larger provision of the public good of control (in that case, the emphasis will be on the horizontal relation among principals while in the text we emphasize the relation of each principal to the agent). It is worth reminding that there are some conflicts between these two dimensions since, as highlighted by our model, each principal might have the incentive of offering a “private” contract.

\(^{18}\)Regarding the last two channels, one might wonder why do they apply to regions within a country and not across countries. Presumably this is due to the presence of better control variables (in the econometric sense) that allow observers to obtain better information by making intra-country comparisons. Similarly, it
To the previous four arguments one might add, and it is indeed done (World Bank, 1999) the standard Tiebout (1956) argument that when the population is mobile and citizens can “vote with their feet”, decentralization may also result in local governments competing with each other to better satisfy the wishes of citizens. Seabright (1996) forcefully argues that there are conceptual problems in extrapolating the Tiebout results to the centralization/decentralization discussion. Also, we agree with Bardhan and Mookherjee (1998)’s point that the assumption of mobility of fully informed citizens in search of a perfect match between their preferences and public services seems less applicable in less developed countries.

II

Focusing now on the channel which we have chosen to emphasize, the first one, the size effect, several caveats are in order. First, the intuition that larger groups will provide smaller amounts of a public good” is not a universal result neither theoretically (for instance, Chamberlin 1974), nor empirically (Isaac and Walker 1988).

This leads to a second point: aggregation technologies (i.e., the way in which individual contributions map into aggregate and individual beneﬁts) do matter, and the incentives resulting from different institutional settings vary according to the nature of the (public) good in question. (See, for instance, the recent paper by Arce and Sandler 1999).

More speciﬁcally, of a wide space of possible aggregation technologies, some (but not all) will be applicable to the speciﬁc problem of principals controlling agents. There are in turn, several possible “technologies” for such control. The particular one we have chosen, is the common-agency model of Bernheim and Whinston (1986) and Dixit (1996).

Even though the common-agency (or multiprincipal) model is a standard one in the literature and did allow us to obtain some insights into the centralization-decentralization question, it is not the most natural framework to think about political control. The archetypal political control technology, voting, is far more restrictive than the set of contracts we has been argued in the literature on macroeconomic policy choice, that countries are more likely to imitate the policies of similar countries (Tommasi and Velasco, 1996, and Meseguer 1999).
have allowed here. In particular, the agent there signs a contract with the whole population, while in our set up, it does so with each citizen. One intriguing possibility would be to explore whether an “optimal” constitutional restriction on the set of contracts that citizens can offer to politicians can lead from the space of contracts we model here to the ones observed in reality. A next step in our agenda will be to embed the decentralization discussion in more explicit political control technologies, and to relate the results of such analysis to the ones obtained under the presumably more general framework utilized here.

It is clear that, on top of the vertical control mechanism of (retrospective) voting, there are also constitutional arrangements such as division of powers that might also lead to increased government accountability (Persson, Roland and Tabellini 1997). This opens up the door to the modelling of multiprincipal-multiagent situations, which characterize real politics, and to the need of looking into some of the details of more complex governance structures, including the possibility of multiple layers of government operating simultaneously, unlike in our model. The simultaneous presence of various levels of government also requires dealing with multiplicity of public goods (or tasks), something that we have not done here, but can in principle be handled within the common agency framework, as in Dixit’s 1996 multitask-multiprincipal model. (See Dixit and Londregan 1998 for a model with multilayered government.)

Finally, it is worth pointing out that there are other instruments through which citizens (or groups of citizens) can punish or reward government officials, such as lobbying, campaign contributions, picketing, striking, violence, and other political technologies. Most of these

19Barro (1973) and Ferejohn (1986) are the classics in the economic modeling of principal-agent control through voting. Seabright (1996) takes some elements of Ferejohn’s model into the decentralization discussion.

20Political parties are natural “aggregators” of citizens in controlling the government. But that begs the question of how parties are controlled. The formal economic modelling of parties might shed some light on these issues, specially if it takes into consideration the differential national or local centeredness of party power (see Spiller and Tommasi 2000 for a discussion of some of this in the case of Argentina).
technologies seem to be asymmetrically distributed across citizens, a force that might be behind the "agency rents" we model in a simplistic way here—low effort might be read as policies that favor specific influential groups rather than the general population. Those additional control technologies may also be differentially available in large versus small communities. (See Bardhan and Mookherjee 1999, for one approach to this problem.)

III

This leads to another point we want to raise in this section: the drawbacks of decentralization (World Bank 1999). We can organize these drawbacks into those that can be quite directly related to principal-agent problems and those that cannot. We begin with the latter ones.

The most common caveat that enthusiasts of decentralization have in the developing world is the fact that many subnational governments seem to lack the technical capacities necessary to undertake many of the decentralized duties. Furthermore, those capacities seem to be unevenly distributed across subnational units, generating the possibility of a dynamic effect of increasing inequality (imagine for instance the dynamic effect of differential qualities of public education). The point seems to be a realistic one, but we have some trouble conceptualizing it theoretically. The total pool of human capital is, in principle, independent of the political organization of the country. Why is it the case that any "capacity" available in the centralized case cannot be replicated in the decentralized case? The answer may relate to economies of scale, agglomeration externalities, the fact that smart people do not want to live away of the largest urban centers which have the better amenities; it might be also a transitional effect due to lack of previous experience; or it might relate to more fundamental political economy or institutional issues that do not give local governments the incentives or opportunities to build those capacities. This is a question worth pursuing.

Coming to problems that could be cast into principal-agent language, there are two related caveats about decentralization in the developing world: the risk of "capture" by local elites, and the Madisonian problem of reverse control. Some of our colleagues in
Political Science were pretty appalled when they saw us applying a principal (citizen) - agent (governor) framework to think about the possible effects of decentralization in, say, Latin America. Their concerns might be translated as a version of Madison’s Dilemma (Kiewiet and McCubbins, 1991). This is a general problem in all agency relations: the resources and authority turned over to the agent for the purpose of furthering the interests of the principals can be turned against the principals. That general agency problem is of particular importance when, as in our case, the agents involved are those in a position of power.

One might speculate that some of those “reverse” control instruments might be more pervasive in smaller communities, perhaps due to reduced political competition within the locality (the downside of the yardstick story) if there is a fixed national pool of political contestants. The increased control of politicians over citizens might also be the downside of the proximity story. It seems promising to attempt to formalize some of these issues within a principal-agent framework. (Bardhan and Mookherjee, 1999, take some steps in that direction.)

4 Concluding remarks

We analyze the advantages and disadvantages of centralization and decentralization, and we find that when there are coordination problems among citizens in controlling the government, decentralized political structures could be optimal, even if all localities have the same preferences.

We focused on “efficiency” aspects of the problem. Some of the solutions found are consistent with many different distributions; the distributive aspects jointly with the pre-existing political arrangements will determine whether the efficient organization will be reached or not. It is not hard to imagine situations where efficient outcomes are dominated politically by suboptimal ones. (Lockwood 1998 provides interesting examples of such situations.)

As already mentioned, the common agency framework does not fully capture the problem of political control by citizens. The framework assumes that each citizen signs a contract
with the agent, while in reality some of these “contracts” are signed collectively through
the aggregation of some actions of principals such as voting. (Moreover in many cases it
is prohibited that a member of the population signs a contract with the agent to act on
his behalf.) This reinforces the claim of the need of study a broader class of “collective”
principal problem.

Even though the “generic” agency model we have chosen has limitations to study political
applications (as those listed above), it has the advantage of allowing us to link with other
areas of application. For instance, our results could be of some use in the theory of the
..rm: for instance the coordination necessary for agency control will influence the optimal
ownership structure of ..rms, the optimal size and configuration of the ..rms, and therefore
might affect market structures.21

Finally, we have not yet fully exploited the framework in order to answer the fundamental
question of exactly what goods, under what circumstances will be provided by different
levels of government. We can give some partial answers by varying some of the parameters
(such as \(b_{ij} \)) in our model, but there are types of public goods not captured by our produc-
tion/consumption technology. Furthermore, we also need to look at a multi-good economy.
Several of these issues could be addressed building from the framework we used here, and
constitute the next steps in the agenda.

21 Our problem is similar to the problem of controlling the managers of a ..rm with disperse ownership.
Schleifer and Vishny (1986) propose having one big shareholder with very strong incentives to control the
agent as a solution to that problem. It seems hard to apply such a solution to our multi-layer government
case; we cannot give to a citizen neither the incentives nor the right to make him behave as a big shareholder;
although we might think of political parties playing a similar role as intermediaries.
References

World Bank (1999) (Burki, Perry and Dillinger) Beyond the Center. Decentralizing the State. Washington, D.C.